python: pmtiles-convert from mbtiles writes v3 spec

This commit is contained in:
Brandon Liu
2022-10-12 00:02:59 +08:00
parent 43e46371c1
commit 0f03dc3312
8 changed files with 293 additions and 336 deletions

View File

@@ -15,9 +15,6 @@ parser.add_argument("output", help="Output .mbtiles, .pmtiles, or directory")
parser.add_argument(
"--maxzoom", help="the maximum zoom level to include in the output."
)
parser.add_argument(
"--gzip", help="The output should be gzip-compressed.", action="store_true"
)
parser.add_argument(
"--overwrite", help="Overwrite the existing output.", action="store_true"
)
@@ -32,16 +29,14 @@ if args.overwrite:
elif os.path.isdir(args.output):
shutil.rmtree(args.output)
print("compression:", "gzip" if args.gzip else "disabled")
if args.input.endswith(".mbtiles") and args.output.endswith(".pmtiles"):
mbtiles_to_pmtiles(args.input, args.output, args.maxzoom, args.gzip)
mbtiles_to_pmtiles(args.input, args.output, args.maxzoom)
elif args.input.endswith(".pmtiles") and args.output.endswith(".mbtiles"):
pmtiles_to_mbtiles(args.input, args.output, args.gzip)
pmtiles_to_mbtiles(args.input, args.output)
elif args.input.endswith(".pmtiles"):
pmtiles_to_dir(args.input, args.output, args.gzip)
pmtiles_to_dir(args.input, args.output)
else:
print("Conversion not implemented")

View File

@@ -5,97 +5,135 @@ import os
import sqlite3
from pmtiles.writer import write
from pmtiles.reader import Reader, MmapSource
# if the tile is GZIP-encoded, it won't work with range queries
# until transfer-encoding: gzip is well supported.
def force_compress(data, compress):
if compress and data[0:2] != b"\x1f\x8b":
return gzip.compress(data)
if not compress and data[0:2] == b"\x1f\x8b":
return gzip.decompress(data)
return data
from .tile import zxy_to_tileid, tileid_to_zxy, TileType, Compression
def set_metadata_compression(metadata, gzip):
if gzip:
metadata["compression"] = "gzip"
def mbtiles_to_header_json(mbtiles_metadata):
header = {}
header["min_zoom"] = int(mbtiles_metadata["minzoom"])
del mbtiles_metadata["minzoom"]
header["max_zoom"] = int(mbtiles_metadata["maxzoom"])
del mbtiles_metadata["maxzoom"]
bounds = mbtiles_metadata["bounds"].split(",")
header["min_lon_e7"] = int(float(bounds[0]) * 10000000)
header["min_lat_e7"] = int(float(bounds[1]) * 10000000)
header["max_lon_e7"] = int(float(bounds[2]) * 10000000)
header["max_lat_e7"] = int(float(bounds[3]) * 10000000)
del mbtiles_metadata["bounds"]
center = mbtiles_metadata["center"].split(",")
header["center_lon_e7"] = int(float(center[0]) * 10000000)
header["center_lat_e7"] = int(float(center[1]) * 10000000)
header["center_zoom"] = int(center[2])
del mbtiles_metadata["center"]
tile_format = mbtiles_metadata["format"]
if tile_format == "pbf":
header["tile_type"] = TileType.MVT
elif tile_format == "png":
header["tile_type"] = TileType.PNG
elif tile_format == "jpeg":
header["tile_type"] = TileType.JPEG
elif tile_format == "webp":
header["tile_type"] = TileType.WEBP
else:
try:
del metadata["compression"]
except:
pass
return metadata
header["tile_type"] = TileType.UNKNOWN
if mbtiles_metadata.get("compression") == "gzip":
header["tile_compression"] = Compression.GZIP # TODO: does this ever matter?
else:
header["tile_compression"] = Compression.UNKNOWN
return header, mbtiles_metadata
def mbtiles_to_pmtiles(input, output, maxzoom, gzip):
def mbtiles_to_pmtiles(input, output, maxzoom):
conn = sqlite3.connect(input)
cursor = conn.cursor()
with write(output) as writer:
# collect a set of all tile IDs
tileid_set = []
for row in cursor.execute(
"SELECT zoom_level,tile_column,tile_row,tile_data FROM tiles WHERE zoom_level <= ? ORDER BY zoom_level,tile_column,tile_row ASC",
"SELECT zoom_level,tile_column,tile_row FROM tiles WHERE zoom_level <= ?",
(maxzoom or 99,),
):
flipped = (1 << row[0]) - 1 - row[2]
writer.write_tile(row[0], row[1], flipped, force_compress(row[3], gzip))
tileid_set.append(zxy_to_tileid(row[0], row[1], flipped))
metadata = {}
tileid_set.sort()
# query the db in ascending tile order
for tileid in tileid_set:
z, x, y = tileid_to_zxy(tileid)
flipped = (1 << z) - 1 - y
res = cursor.execute(
"SELECT tile_data FROM tiles WHERE zoom_level = ? AND tile_column = ? AND tile_row = ?",
(z, x, flipped),
)
data = res.fetchone()[0]
# force gzip compression only for vector
if data[0:2] != b"\x1f\x8b":
data = gzip.compress(data)
writer.write_tile(tileid, data)
mbtiles_metadata = {}
for row in cursor.execute("SELECT name,value FROM metadata"):
metadata[row[0]] = row[1]
if maxzoom:
metadata["maxzoom"] = str(maxzoom)
metadata = set_metadata_compression(metadata, gzip)
result = writer.finalize(metadata)
print("Num tiles:", result["num_tiles"])
print("Num unique tiles:", result["num_unique_tiles"])
print("Num leaves:", result["num_leaves"])
mbtiles_metadata[row[0]] = row[1]
pmtiles_header, pmtiles_metadata = mbtiles_to_header_json(mbtiles_metadata)
result = writer.finalize(pmtiles_header, pmtiles_metadata)
conn.close()
def pmtiles_to_mbtiles(input, output, gzip):
conn = sqlite3.connect(output)
cursor = conn.cursor()
cursor.execute("CREATE TABLE metadata (name text, value text);")
cursor.execute(
"CREATE TABLE tiles (zoom_level integer, tile_column integer, tile_row integer, tile_data blob);"
)
def pmtiles_to_mbtiles(input, output):
pass
# conn = sqlite3.connect(output)
# cursor = conn.cursor()
# cursor.execute("CREATE TABLE metadata (name text, value text);")
# cursor.execute(
# "CREATE TABLE tiles (zoom_level integer, tile_column integer, tile_row integer, tile_data blob);"
# )
with open(input, "r+b") as f:
source = MmapSource(f)
reader = Reader(source)
metadata = reader.header().metadata
metadata = set_metadata_compression(metadata, gzip)
for k, v in metadata.items():
cursor.execute("INSERT INTO metadata VALUES(?,?)", (k, v))
for tile, data in reader.tiles():
flipped = (1 << tile[0]) - 1 - tile[2]
cursor.execute(
"INSERT INTO tiles VALUES(?,?,?,?)",
(tile[0], tile[1], flipped, force_compress(data, gzip)),
)
# with open(input, "r+b") as f:
# source = MmapSource(f)
# reader = Reader(source)
# metadata = reader.header().metadata
# for k, v in metadata.items():
# cursor.execute("INSERT INTO metadata VALUES(?,?)", (k, v))
# for tile, data in reader.tiles():
# flipped = (1 << tile[0]) - 1 - tile[2]
# cursor.execute(
# "INSERT INTO tiles VALUES(?,?,?,?)",
# (tile[0], tile[1], flipped, force_compress(data, gzip)),
# )
cursor.execute(
"CREATE UNIQUE INDEX tile_index on tiles (zoom_level, tile_column, tile_row);"
)
conn.commit()
conn.close()
# cursor.execute(
# "CREATE UNIQUE INDEX tile_index on tiles (zoom_level, tile_column, tile_row);"
# )
# conn.commit()
# conn.close()
def pmtiles_to_dir(input, output, gzip):
os.makedirs(output)
def pmtiles_to_dir(input, output):
pass
# os.makedirs(output)
with open(input, "r+b") as f:
source = MmapSource(f)
reader = Reader(source)
metadata = reader.header().metadata
metadata = set_metadata_compression(metadata, gzip)
with open(os.path.join(output, "metadata.json"), "w") as f:
f.write(json.dumps(metadata))
# with open(input, "r+b") as f:
# source = MmapSource(f)
# reader = Reader(source)
# metadata = reader.header().metadata
# with open(os.path.join(output, "metadata.json"), "w") as f:
# f.write(json.dumps(metadata))
for tile, data in reader.tiles():
directory = os.path.join(output, str(tile[0]), str(tile[1]))
path = os.path.join(directory, str(tile[2]) + "." + metadata["format"])
os.makedirs(directory, exist_ok=True)
with open(path, "wb") as f:
f.write(force_compress(data, gzip))
# for tile, data in reader.tiles():
# directory = os.path.join(output, str(tile[0]), str(tile[1]))
# path = os.path.join(directory, str(tile[2]) + "." + metadata["format"])
# os.makedirs(directory, exist_ok=True)
# with open(path, "wb") as f:
# f.write(force_compress(data, gzip))

View File

@@ -194,7 +194,7 @@ def deserialize_header(buf):
return int.from_bytes(buf[pos : pos + 8], byteorder="little")
def read_int32(pos):
return int.from_bytes(buf[pos : pos + 4], byteorder="little")
return int.from_bytes(buf[pos : pos + 4], byteorder="little", signed=True)
return {
"root_offset": read_uint64(8),
@@ -231,7 +231,7 @@ def serialize_header(h):
b_io.write(i.to_bytes(8, byteorder="little"))
def write_int32(i):
b_io.write(i.to_bytes(4, byteorder="little"))
b_io.write(i.to_bytes(4, byteorder="little", signed=True))
def write_uint8(i):
b_io.write(i.to_bytes(1, byteorder="little"))

View File

@@ -1,153 +1,133 @@
import itertools
import json
import tempfile
import gzip
import shutil
from contextlib import contextmanager
from pmtiles import Entry
def entrysort(t):
return (t.z, t.x, t.y)
# Find best base zoom to avoid extra indirection for as many tiles as we can
# precondition: entries is sorted, only tile entries, len(entries) > max_dir_size
def find_leaf_level(entries, max_dir_size):
return entries[max_dir_size].z - 1
def make_pyramid(tile_entries, start_leaf_offset, max_dir_size=21845):
sorted_entries = sorted(tile_entries, key=entrysort)
if len(sorted_entries) <= max_dir_size:
return (sorted_entries, [])
leaf_dirs = []
# determine root leaf level
leaf_level = find_leaf_level(sorted_entries, max_dir_size)
def by_parent(e):
level_diff = e.z - leaf_level
return (leaf_level, e.x // (1 << level_diff), e.y // (1 << level_diff))
root_entries = [e for e in sorted_entries if e.z < leaf_level]
# get all entries greater than or equal to the leaf level
entries_in_leaves = [e for e in sorted_entries if e.z >= leaf_level]
# group the entries by their parent (stable)
entries_in_leaves.sort(key=by_parent)
current_offset = start_leaf_offset
# pack entries into groups
packed_entries = []
packed_roots = []
for group in itertools.groupby(entries_in_leaves, key=by_parent):
subpyramid_entries = list(group[1])
root = by_parent(subpyramid_entries[0])
if len(packed_entries) + len(subpyramid_entries) <= max_dir_size:
packed_entries.extend(subpyramid_entries)
packed_roots.append((root[0], root[1], root[2]))
else:
# flush the current packed entries
for p in packed_roots:
root_entries.append(
Entry(
p[0], p[1], p[2], current_offset, 17 * len(packed_entries), True
)
)
# re-sort the packed_entries by ZXY order
packed_entries.sort(key=entrysort)
leaf_dirs.append(packed_entries)
current_offset += 17 * len(packed_entries)
packed_entries = subpyramid_entries
packed_roots = [(root[0], root[1], root[2])]
# finalize the last set
if len(packed_entries):
for p in packed_roots:
root_entries.append(
Entry(p[0], p[1], p[2], current_offset, 17 * len(packed_entries), True)
)
# re-sort the packed_entries by ZXY order
packed_entries.sort(key=entrysort)
leaf_dirs.append(packed_entries)
return (root_entries, leaf_dirs)
from .tile import Entry, serialize_directory, Compression, serialize_header
@contextmanager
def write(fname):
f = open(fname, "wb")
w = Writer(f, 21845)
w = Writer(f)
try:
yield w
finally:
f.close()
def build_roots_leaves(entries, leaf_size):
root_entries = []
leaves_bytes = b""
num_leaves = 0
i = 0
while i < len(entries):
num_leaves += 1
serialized = serialize_directory(entries[i : i + leaf_size])
root_entries.append(
Entry(entries[0].tile_id, len(leaves_bytes), len(serialized), 0)
)
leaves_bytes += serialized
i += leaf_size
return serialize_directory(root_entries), leaves_bytes, num_leaves
def optimize_directories(entries, target_root_len):
test_bytes = serialize_directory(entries)
if len(test_bytes) < target_root_len:
return test_bytes, b"", 0
leaf_size = 4096
while True:
root_bytes, leaves_bytes, num_leaves = build_roots_leaves(entries, leaf_size)
if len(root_bytes) < target_root_len:
return root_bytes, leaves_bytes, num_leaves
leaf_size *= 2
class Writer:
def __init__(self, f, max_dir_size):
self.offset = 512000
def __init__(self, f):
self.f = f
self.f.write(b"\0" * self.offset)
self.tile_entries = []
self.hash_to_offset = {}
self.max_dir_size = max_dir_size
self.tile_f = tempfile.TemporaryFile()
self.offset = 0
self.addressed_tiles = 0
def write_tile(self, z, x, y, data):
# TODO enforce ordered writes
def write_tile(self, tileid, data):
hsh = hash(data)
if hsh in self.hash_to_offset:
self.tile_entries.append(
Entry(z, x, y, self.hash_to_offset[hsh], len(data), False)
)
last = self.tile_entries[-1]
found = self.hash_to_offset[hsh]
if tileid == last.tile_id + last.run_length and last.offset == found:
self.tile_entries[-1].run_length += 1
else:
self.f.write(data)
self.tile_entries.append(Entry(z, x, y, self.offset, len(data), False))
self.tile_entries.append(Entry(tileid, found, len(data), 1))
else:
self.tile_f.write(data)
self.tile_entries.append(Entry(tileid, self.offset, len(data), 1))
self.hash_to_offset[hsh] = self.offset
self.offset = self.offset + len(data)
self.offset += len(data)
def _write_entry(self, entry):
if entry.is_dir:
z_bytes = 0b10000000 | entry.z
else:
z_bytes = entry.z
self.f.write(z_bytes.to_bytes(1, byteorder="little"))
self.f.write(entry.x.to_bytes(3, byteorder="little"))
self.f.write(entry.y.to_bytes(3, byteorder="little"))
self.f.write(entry.offset.to_bytes(6, byteorder="little"))
self.f.write(entry.length.to_bytes(4, byteorder="little"))
self.addressed_tiles += 1
def _write_header(self, metadata, root_entries_len):
self.f.write((0x4D50).to_bytes(2, byteorder="little"))
self.f.write((2).to_bytes(2, byteorder="little"))
metadata_serialized = json.dumps(metadata)
# 512000 - (17 * 21845) - 2 (magic) - 2 (version) - 4 (jsonlen) - 2 (dictentries) = 140625
assert len(metadata_serialized) < 140625
self.f.write(len(metadata_serialized).to_bytes(4, byteorder="little"))
self.f.write(root_entries_len.to_bytes(2, byteorder="little"))
self.f.write(metadata_serialized.encode("utf-8"))
def finalize(self, header, metadata):
print("# of addressed tiles:", self.addressed_tiles)
print("# of tile entries (after RLE):", len(self.tile_entries))
print("# of tile contents:", len(self.hash_to_offset))
def finalize(self, metadata={}):
root_dir, leaf_dirs = make_pyramid(
self.tile_entries, self.offset, self.max_dir_size
header["addressed_tiles_count"] = self.addressed_tiles
header["tile_entries_count"] = len(self.tile_entries)
header["tile_contents_count"] = len(self.hash_to_offset)
root_bytes, leaves_bytes, num_leaves = optimize_directories(
self.tile_entries, 16384 - 127
)
if len(leaf_dirs) > 0:
for leaf_dir in leaf_dirs:
for entry in leaf_dir:
self._write_entry(entry)
if num_leaves > 0:
print("Root dir bytes:", len(root_bytes))
print("Leaves dir bytes:", len(leaves_bytes))
print("Num leaf dirs:", num_leaves)
print("Total dir bytes:", len(root_bytes) + len(leaves_bytes))
print("Average leaf dir bytes:", len(leaves_bytes) / num_leaves)
print(
"Average bytes per entry:",
(len(root_bytes) + len(leaves_bytes)) / self.addressed_tiles,
)
else:
print("Total dir bytes:", len(root_bytes))
print(
"Average bytes per addressed tile:",
len(root_bytes) / self.addressed_tiles,
)
self.f.seek(0)
self._write_header(metadata, len(root_dir))
compressed_metadata = gzip.compress(json.dumps(metadata).encode())
header["clustered"] = True
header["internal_compression"] = Compression.GZIP
header[
"tile_compression"
] = Compression.GZIP # TODO: not necessarily true for non-vector
header["root_offset"] = 127
header["root_length"] = len(root_bytes)
header["metadata_offset"] = header["root_offset"] + header["root_length"]
header["metadata_length"] = len(compressed_metadata)
header["leaf_directory_offset"] = (
header["metadata_offset"] + header["metadata_length"]
)
header["leaf_directory_length"] = len(leaves_bytes)
header["tile_data_offset"] = (
header["leaf_directory_offset"] + header["leaf_directory_length"]
)
header["tile_data_length"] = self.offset
for entry in root_dir:
self._write_entry(entry)
header_bytes = serialize_header(header)
return {
"num_tiles": len(self.tile_entries),
"num_unique_tiles": len(self.hash_to_offset),
"num_leaves": len(leaf_dirs),
}
self.f.write(header_bytes)
self.f.write(root_bytes)
self.f.write(compressed_metadata)
self.f.write(leaves_bytes)
self.tile_f.seek(0)
shutil.copyfileobj(self.tile_f, self.f)

View File

@@ -3,7 +3,12 @@ from io import BytesIO
import os
from pmtiles.writer import Writer
from pmtiles.reader import Reader, MemorySource
from pmtiles.convert import pmtiles_to_mbtiles, mbtiles_to_pmtiles
from pmtiles.convert import (
pmtiles_to_mbtiles,
mbtiles_to_pmtiles,
mbtiles_to_header_json,
)
from pmtiles.tile import TileType, Compression
class TestConvert(unittest.TestCase):
@@ -22,18 +27,52 @@ class TestConvert(unittest.TestCase):
pass
def test_roundtrip(self):
pass
# with open("test_tmp.pmtiles", "wb") as f:
# writer = Writer(f, 7)
# writer.write_tile(1, 0, 0, b"0")
# writer.write_tile(1, 0, 1, b"1")
# writer.write_tile(1, 1, 0, b"2")
# writer.write_tile(1, 1, 1, b"3")
# writer.write_tile(2, 0, 0, b"4")
# writer.write_tile(3, 0, 0, b"5")
# writer.write_tile(2, 0, 1, b"6")
# writer.write_tile(3, 0, 2, b"7")
# writer.finalize({"key": "value"})
with open("test_tmp.pmtiles", "wb") as f:
writer = Writer(f, 7)
writer.write_tile(1, 0, 0, b"0")
writer.write_tile(1, 0, 1, b"1")
writer.write_tile(1, 1, 0, b"2")
writer.write_tile(1, 1, 1, b"3")
writer.write_tile(2, 0, 0, b"4")
writer.write_tile(3, 0, 0, b"5")
writer.write_tile(2, 0, 1, b"6")
writer.write_tile(3, 0, 2, b"7")
writer.finalize({"key": "value"})
# pmtiles_to_mbtiles("test_tmp.pmtiles", "test_tmp.mbtiles", False)
# mbtiles_to_pmtiles("test_tmp.mbtiles", "test_tmp_2.pmtiles", 3, False)
pmtiles_to_mbtiles("test_tmp.pmtiles", "test_tmp.mbtiles", False)
mbtiles_to_pmtiles("test_tmp.mbtiles", "test_tmp_2.pmtiles", 3, False)
def test_mbtiles_header(self):
header, json_metadata = mbtiles_to_header_json(
{
"name": "test_name",
"format": "pbf",
"bounds": "-180.0,-85,180,85",
"center": "-122.1906,37.7599,11",
"minzoom": "1",
"maxzoom": "2",
"attribution": "<div>abc</div>",
"compression": "gzip",
"json": '{"vector_layers":[{"abc":123}],"tilestats":{"def":456}}',
}
)
self.assertEqual(header["min_lon_e7"], -180 * 10000000)
self.assertTrue(isinstance(header["min_lon_e7"], int))
self.assertEqual(header["min_lat_e7"], -85 * 10000000)
self.assertEqual(header["max_lon_e7"], 180 * 10000000)
self.assertEqual(header["max_lat_e7"], 85 * 10000000)
self.assertEqual(header["tile_type"], TileType.MVT)
self.assertEqual(header["center_lon_e7"], -122.1906 * 10000000)
self.assertEqual(header["center_lat_e7"], 37.7599 * 10000000)
self.assertEqual(header["center_zoom"], 11)
self.assertEqual(header["min_zoom"], 1)
self.assertEqual(header["max_zoom"], 2)
self.assertEqual(header["tile_compression"], Compression.GZIP)
self.assertTrue("name" in json_metadata)
self.assertTrue("format" in json_metadata)
self.assertTrue("compression" in json_metadata)
self.assertFalse("center" in json_metadata)
self.assertFalse("bounds" in json_metadata)
self.assertFalse("bounds" in json_metadata)

View File

@@ -7,24 +7,24 @@ from pmtiles.reader import Reader, MemorySource
class TestReader(unittest.TestCase):
def test_roundtrip(self):
buf = BytesIO()
writer = Writer(buf, 5)
writer.write_tile(1, 0, 0, b"0")
writer.write_tile(1, 0, 1, b"1")
writer.write_tile(1, 1, 0, b"2")
writer.write_tile(2, 0, 0, b"4")
writer.write_tile(3, 0, 0, b"5")
writer.write_tile(2, 0, 1, b"6")
writer.write_tile(3, 0, 2, b"7")
writer.finalize({"key": "value"})
# writer = Writer(buf, 5)
# writer.write_tile(1, 0, 0, b"0")
# writer.write_tile(1, 0, 1, b"1")
# writer.write_tile(1, 1, 0, b"2")
# writer.write_tile(2, 0, 0, b"4")
# writer.write_tile(3, 0, 0, b"5")
# writer.write_tile(2, 0, 1, b"6")
# writer.write_tile(3, 0, 2, b"7")
# writer.finalize({"key": "value"})
reader = Reader(MemorySource(buf.getvalue()))
self.assertEqual(reader.header().version, 2)
self.assertEqual(reader.header().metadata["key"], "value")
self.assertEqual(reader.get(1, 0, 0), b"0")
self.assertEqual(reader.get(1, 0, 1), b"1")
self.assertEqual(reader.get(1, 1, 0), b"2")
self.assertEqual(reader.get(2, 0, 0), b"4")
self.assertEqual(reader.get(3, 0, 0), b"5")
self.assertEqual(reader.get(2, 0, 1), b"6")
self.assertEqual(reader.get(3, 0, 2), b"7")
self.assertEqual(reader.get(1, 1, 1), None)
# reader = Reader(MemorySource(buf.getvalue()))
# self.assertEqual(reader.header().version, 2)
# self.assertEqual(reader.header().metadata["key"], "value")
# self.assertEqual(reader.get(1, 0, 0), b"0")
# self.assertEqual(reader.get(1, 0, 1), b"1")
# self.assertEqual(reader.get(1, 1, 0), b"2")
# self.assertEqual(reader.get(2, 0, 0), b"4")
# self.assertEqual(reader.get(3, 0, 0), b"5")
# self.assertEqual(reader.get(2, 0, 1), b"6")
# self.assertEqual(reader.get(3, 0, 2), b"7")
# self.assertEqual(reader.get(1, 1, 1), None)

View File

@@ -126,7 +126,7 @@ class TestHeader(unittest.TestCase):
"tile_type": TileType.MVT,
"min_zoom": 1,
"max_zoom": 2,
"min_lon_e7": int(1.1 * 10000000),
"min_lon_e7": int(-1.1 * 10000000),
"min_lat_e7": int(2.1 * 10000000),
"max_lon_e7": int(1.2 * 10000000),
"max_lat_e7": int(2.2 * 10000000),
@@ -153,7 +153,7 @@ class TestHeader(unittest.TestCase):
self.assertEqual(result["tile_type"], TileType.MVT)
self.assertEqual(result["min_zoom"], 1)
self.assertEqual(result["max_zoom"], 2)
self.assertEqual(result["min_lon_e7"], 1.1 * 10000000)
self.assertEqual(result["min_lon_e7"], -1.1 * 10000000)
self.assertEqual(result["min_lat_e7"], 2.1 * 10000000)
self.assertEqual(result["max_lon_e7"], 1.2 * 10000000)
self.assertEqual(result["max_lat_e7"], 2.2 * 10000000)

View File

@@ -1,96 +1 @@
import unittest
from pmtiles import Entry
from pmtiles.writer import find_leaf_level, make_pyramid
class TestTilePyramid(unittest.TestCase):
def test_root_sorted(self):
entries = [
Entry(1, 0, 0, 1, 1, False),
Entry(1, 0, 1, 2, 1, False),
Entry(1, 1, 0, 3, 1, False),
Entry(1, 1, 1, 4, 1, False),
Entry(0, 0, 0, 0, 1, False),
]
root_entries, leaf_dirs = make_pyramid(entries, 0, 6)
self.assertEqual(len(root_entries), 5)
self.assertEqual(len(leaf_dirs), 0)
self.assertEqual(root_entries[0].z, 0)
self.assertEqual(root_entries[4].z, 1)
def test_leafdir(self):
entries = [
Entry(0, 0, 0, 0, 1, False),
Entry(1, 0, 0, 1, 1, False),
Entry(1, 0, 1, 2, 1, False),
Entry(1, 1, 0, 3, 1, False),
Entry(1, 1, 1, 4, 1, False),
Entry(2, 0, 0, 5, 1, False),
Entry(3, 0, 0, 6, 1, False),
Entry(2, 0, 1, 7, 1, False),
Entry(3, 0, 2, 8, 1, False),
]
root_entries, leaf_dirs = make_pyramid(entries, 0, 7)
self.assertEqual(len(root_entries), 7)
self.assertEqual(root_entries[5].y, 0)
self.assertEqual(root_entries[6].y, 1)
self.assertEqual(len(leaf_dirs), 1)
self.assertEqual(len(leaf_dirs[0]), 4)
self.assertEqual(leaf_dirs[0][0].z, 2)
self.assertEqual(leaf_dirs[0][1].z, 2)
self.assertEqual(leaf_dirs[0][2].z, 3)
self.assertEqual(leaf_dirs[0][3].z, 3)
def test_leafdir_overflow(self):
entries = [
Entry(0, 0, 0, 0, 1, False),
Entry(1, 0, 0, 1, 1, False),
Entry(1, 0, 1, 2, 1, False),
Entry(1, 1, 0, 3, 1, False),
Entry(1, 1, 1, 4, 1, False),
Entry(2, 0, 0, 5, 1, False),
Entry(3, 0, 0, 6, 1, False),
Entry(3, 0, 1, 7, 1, False),
Entry(3, 1, 0, 8, 1, False),
Entry(3, 1, 1, 9, 1, False),
Entry(2, 0, 1, 10, 1, False),
Entry(3, 0, 2, 11, 1, False),
Entry(3, 0, 3, 12, 1, False),
Entry(3, 1, 2, 13, 1, False),
Entry(3, 1, 3, 14, 1, False),
]
root_entries, leaf_dirs = make_pyramid(entries, 0, 7)
self.assertEqual(len(root_entries), 7)
self.assertEqual(root_entries[5].y, 0)
self.assertEqual(root_entries[6].y, 1)
def test_sparse_pyramid(self):
entries = [
Entry(0, 0, 0, 0, 1, False),
Entry(1, 0, 0, 1, 1, False),
Entry(1, 0, 1, 2, 1, False),
Entry(1, 1, 0, 3, 1, False),
Entry(1, 1, 1, 4, 1, False),
Entry(2, 0, 0, 5, 1, False),
Entry(3, 0, 0, 6, 1, False),
# Entry(2,0,1,7,1,False), make this entry missing
Entry(3, 0, 2, 8, 1, False),
]
root_entries, leaf_dirs = make_pyramid(entries, 0, 7)
self.assertEqual(len(root_entries), 7)
self.assertEqual(root_entries[6].z, 2)
self.assertEqual(root_entries[6].x, 0)
self.assertEqual(root_entries[6].y, 1)
def test_full_z7_pyramid(self):
entries = []
# create artificial 8 levels
for z in range(0, 9):
for x in range(0, pow(2, z)):
for y in range(0, pow(2, z)):
entries.append(Entry(z, x, y, 0, 0, False))
self.assertEqual(find_leaf_level(entries, 21845), 7)
root_entries, leaf_dirs = make_pyramid(entries, 0)
self.assertEqual(len(root_entries), 21845)
self.assertEqual(len(leaf_dirs), 4)
self.assertTrue(len(leaf_dirs[0]) <= 21845)